Foam formed acoustic elements

Jani Lehmonen, Jukka Ketoja / VTT Technical Research Centre of Finland Ltd

Tiina Härkäsalmi, Jukka Itälä, Carlos Peralta / Aalto University Sanna Siljander / Tampere University of Technology

DESIGN DRIVEN VALUE CHAINS IN THE WORLD OF CELLULOSE DWoC

Targets and motivation

Overall goal

To combine technological solution and design approach

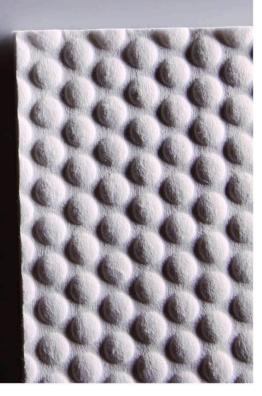
Technologies

 In this study, foam forming technology and meulding technology was examined through a design-driven procession and process entailing iterative prototyping.

Interactions

 Interactions between wood-pulp fibres, the perforated mould and the forming process opened opportunities for multi-scale material design, which re-defined the direction of the research.

Modified structures


 This finding entailed the simultaneous formation of macroscopic 3D forms, surface textures, and micro-porous material structures.

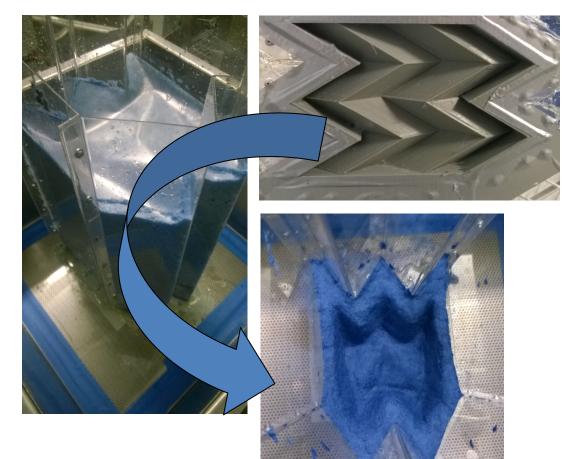
Application

 The studied application was sound insulation in interior spaces based on a foam-formed monomaterial structure made of renewable and recyclable biomaterials.

Design-driven mould development and results

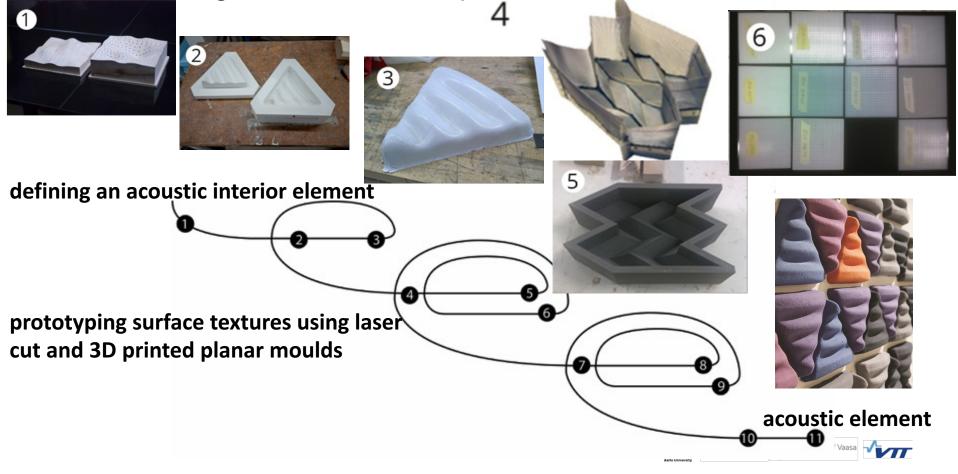
Materials

- The cellulosic fibre material was gently refined bleached kraft pulp (pine, coarseness 142 µg/m, 20°SR).
- The pulp (dry solids content 13.8%) was dyed with commercially available colours.



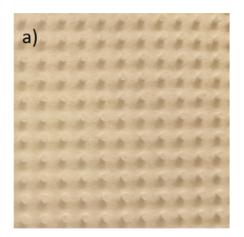
Foam forming of 3D-forms and surface textures

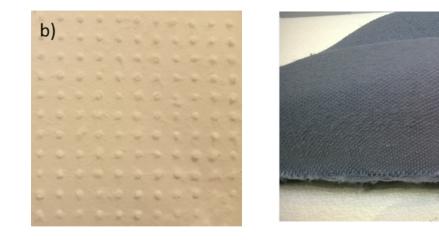
- Foam moulding process with dyed kraft fibres and wet fibre network after vacuum assisted dewatering.
- Vacuum level around 50 kPa in dewatering phase.


Tekes

TAMPERE UNIVERSITY OF TECHNOLOGY

🔯 University of Vaasa


Design driven VALUE CHAINS IN THE WORLD OF CELLULOSE DWOC

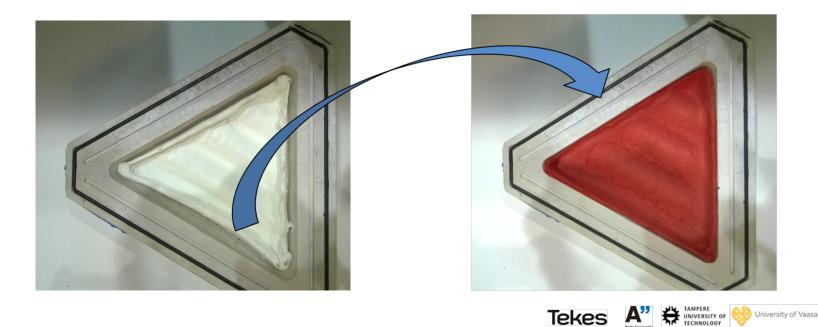

 Research was executed through a design-driven iterative process and this diagram represents the stages and sequences of the design-driven iterative process used in the research.

DESIGN DRIVEN
VALUE CHAINS
IN THE WORLD
OF CELLULOSETailoring material surface texture with
controlled foam removal
Strength of foam-based process

- In water forming, one usually tries to get rid of **any "wire marking"**, which is considered undesirable for planar products like paper or board. In relation to foam forming, similar surface effects have not been previously discussed.
- Comparison of surface texture for a) foam forming and b) water forming using the planar sheet mould
- In the case of foam forming, designed surface structure could be copied from the mould into sheet

From planar to 3D-forms

- With the metal wire mould, the panels were found to repeat the relatively sharp edges of the mould whenever the drainage in that corresponding area was effective.
- **3D-form** with sharp edges and surface texture **copied from the wire mould**.



- Dying and Shrinking
 - Drying of the wet fibre material proved to be a critical operation due to the natural tendency of the fibres to shrink which leads to **dimensional instability**
- Solution
 - This was solved by special mold technology; shrinkage remained below 2% during drying.

DESIGN DRIVEN
VALUE CHAINS
IN THE WORLD
OF CELLULOSEThis research led to a demonstration of
acoustic wallDW oCacoustic wall

 Acoustic wall of 56 panels of varying colour using mould technology at Pulp&Paper exhibition in 2014

Photo: Eeva Suorlahti

Conclusions

- **Economy**: Competitive /low raw material price. Production process suitable for small companies
- Foam can be used as a carrier medium that enables controlled forming of uniform surface textures.
- Design-driven process entailing iterative prototyping turned out to be a powerful way to develop cellulosic fibre materials based on foam forming technology.
- **Dimensional stability** can be **improved through restricted drying** to minimize shrinkage.
- Interdisciplinary collaboration linking the design-driven process to a material-based approach led to new findings regarding both technical and perceptual qualities.

Thank you

PRESENTED BY Jani Lehmonen

Senior Scientist VTT Technical Research Centre of Finland Ltd jani.lehmonen@vtt.fi

