

Novel structural materials with multi-scale fibre components (NoMa)

Katariina Torvinen, Research Manager VTT DesignMuseo 13.06.2017

NoMa consortium

SMALL ENTERPRISES

3D Formtech Oy

3DTech Oy

Ahosen Taimisto Oy

Brainwood Oy

Co. Panu Isokangas Oy

Earthpac Oy

Novarbo Oy

Epira Oy

Hikinoro Oy

Swanheart Design Oy

FL-Pipe Oy

LARGE ENTERPRISES

Metsä Board

Metsä Fibre

- Budget of project ~1.3 M€
- Duration 01.6.2015 30.11.2017
- Research partners: VTT and LAMK
- Funding partners:
 TEKES, VTT, companies and LAMK

Lahden ammattikorkeakoulu Lahti University of Applied Sciences

2

28/06/2017 PART OF BIOLAN GROUP

Novel fibre foams and biocomposites applications

Goal of the study

Multi-scale fibres (from centimeters to nanoscale, various aspect ratios) for stronger material structures

- Optimal combination of fines, long fibers, nanocelluloses, polymers and additives to obtain good adhesion in biocomposites and bonding in fibre foam structures
- Novel bio based products for SMEs through innovative raw material combinations (hemp fractions, hydrophobins, lignocellulosic fines, nanocelluloses, wood wool, side streams) and technologies combined with design approach

Fibre composites according to fibre content

Foam formed materials

MFC, NFC, containing plastic films

Materials for 3D-printing

Extrusion moulded profiles with cellulosic fibres

Injection moulded products with cellulosic fibres

Printing paper, Coated paper, Sized paper

Non-woven

Classic Wood Composites

Thermosetting moulded fibre composites

All cellulose composites

Fiber foams

Fiber suspension + air

- Typical air content 4070%
- Foam stability can be controlled
- Typical bubble diameter ~100 µm

No fiber flocculation

Small bubbles fill the free space

Foam forming of low density structures

- Foaming of water-fiber-surfactant mixture to reach air content 50 - 60%
- Foam is poured into a foam forming mould, size 42 x 42 cm²
- Drainage of liquid using gravity or low vacuum level, no wet pressing
- Drying in oven 60 70°C, ~24 h, drying time depends on pulp type

Forming mould with fibre foam

In-plane dried structures of different thicknesses in

Application: Light weight inner packages

- § Light and soft fibrous cushioning element that protects the product from impacts
- § Product shape made in manufacturing phase
- § Replacement of non-biodegradable EPS based inner packages (Europe: 1.6 million tons of EPS waste in 2010)

Foam formed inner package

wrap

Design: Kaisa Jäntti, LAMK

Materials and foam forming: VTT

Photos: Kaisa Jäntti, LAMK and Juha

Hakulinen, VTT

Application: Designed decorative sound absorber panels

Kaarna wall panels designed by Hannakaisa Pekkala LAMK Exhibition of "Designed Cellulose For Future II" in May 2016, Helsinki

- § Foam forming and designdriven aspect lead to designed porous structures with special 3D form and sound absorption property
- §Cellulose pulp used as raw material instead of highly processed and disposable materials

Multi-scale material experiments: Hemp, refined bark and wood wool fractions with cellulose pulp

Multi-scale material experiments: Hemp fractions, fibres, bast and dust with polymers

3D printed biocomposite decorative hydrogels

Patent pending

Exhibition of "Designed Cellulose For Future II" in May 2016, Helsinki Aalto Arts

3D printed bio-based hydrogels for decorative applications Design Susanna Kettunen LAMK 3D printing and material development: VTT Photo: Juha Hakulinen VTT

Pure 100% cellulose pulp sheets moldable materials

Moldable pure cellulose pulp sheets Design: Tomi Laukkanen LAMK

Materials: Metsä Group Photos: Juha Hakulinen VTT

3D printed wood sawdust and biopolymer stimulus toys for production animals

3D printed toys for animals Design: Kristoffer Heikkinen LAMK 3D printing: 3DTech Commercial materials Photos by Juha Hakulinen VTT Exhibition of "Designed Cellulose For Future II" in May 2016, Helsinki

