AN INVESTIGATION ON THE DESIGN DRIVEN APPROACH TO MATERIALS DEVELOPMENT (In DWoC)

BARRIERS AND ENABLERS FOR COLLABORATION BETWEEN DESIGNERS AND SCIENTISTS IN THE CONTEXT OF MATERIAL DEVELOPMENT

CARLOS PERALTA Ph.D (Cantab)

@ Design Museum, Helsinki, 13/June/2017

Materials development is...

People experience products through their material properties..

Caldura® SL2i & Gore® Cr Defender® M & Stedfast

Defender® M & Stedfast

Quantum3D® SL2i & Gore

Caldura® SI 2i & Gore® C Defender® M & Stedfast Defender® M & Stedfast

Initial

Initial 5X After Wash After Flame

Initial 5X After Wash

Initial

5X After Wash

5X After Wash

10X After Wash

			als • Materia	× \+		
			https://materia.nl/m	naterial/?keyword=&sort-order=newe	st&material_categ	ory_id[]=12
				materia	Channels	Articles
E				STRUCTURE	^	_
e e e e e e e e e e e e e e e e e e e				CLOSED		IS STORING
				0051		NIGH
	6.6 osy (225 osm)			OPEN		H NUT IN
	TenCate ENFORCE [™] Technology (Patent Pending)			TEXTURE	~	LN CTH
	DuPont [™] Nomex [®] and Kevlar [®]					Sector Sector
	Twill			COARSE	-	A SENSE &
	Khaki, Light Gold, Black, Yellow and Spruce Green			MEDINA		TRANSLU
	Super Shelltite**			MEDIUM		A SUMAN
	Yes			SMOOTH	_	PLASTICS
	NFPA 19/1					LT MIT
		A ³ TENCATE		VARIABLE		
Crosstech® Black	41 to 43	protoctivofabrica			-	
osstech® Black	40 to 42	protectiverabiles		HARDNESS	^	
stedair* 4000	44 to 46	6501 Mall Boulevard				
® Crossterb® Black	250 to 270	Union City, Georgia 30291		HARD	E.	
nsstech® Black	270 to 290	USA		RESILIENT		
Stedair® 4000	220 to 240	+1 (770) 969-1000				
Stedair® 3000	220 to 240	TenCateFabrics.com		SOFT		
						P. Statement
	3,000 cycles	All listed data represent typical values. Results from multiple tests unless		TEMPERATURE	^	a set of
	45 x 45 lbf (200 x 200 N)	otherwise stated. To the best of our knowledge, all information contained herein				The second
	45 x 45 lbf (200 x 200 N)	is accurate. TenCate Protective Fabrics		COOL		Carlotter
	350 x 350 lbf (1,555 x 1,555 N)	the accuracy or completeness of the		MEDIUM		and a second
	350 X 350 IDT (1,555 X 1,555 N)	substance must satisfy themselves by				34384
		independent investigation that the material can be used safely. TenCate Protective		WARM		all services
	0.5 x 0.5 in (13 x 13 mm)	Fabrics describes only certain hazards but				Contraction of the
	0.4 x 0.4 in (10 x 10 mm)	hazards.		ACOUSTICS	~	PLASTICS
	U X U SECONDS	Copyright @ 2015 TenCate Protective				
	< 1.0%	Royal Ten Cate. ENFORCE Technology is a		GOOD	_	MODI
	< 1.0 M	registered trademark of TenCate Protective Fabrics USA.		MODEDATE		MODU
	-E 09	TenCate-Freedom.pdf Version 08192015A		MODERALE		
	< 7.0%			POOR	_	
	× 1.u /b					
				ODEUR	^	
				MODERATE		

ew History Bookmarks Tools Help

Therefore developing the technical and sensorial material properties is important and necessary...

...and having Designers & Scientists collaborating for an integrated development of material properties makes sense

DESIGN DRIVEN VALUE CHAINS IN THE WORLD OF CELLULOSE DWoC

However designers & scientists ARE different and this can be challenging

Collaboration between designers and Scientists has been studied...

Collaboration between Designers and Scientists in the Context of Scientific Research

A thesis submitted to The University of Cambridge For the degree of Doctor of Philosophy

Carlos Peralta ID, MA ID (Domus)

University of Cambridge Department of Engineering Robinson College February 2013

	Enablers for Collaboration Summary (1/2)			
Barriers for Collaboration Summary (2/2)				
Area of collaboration	Aspect of collaboration Enablers Collaboration process			
BARRIERS	Designers' visualising of scientific processes, devices, etc/tool for understanding and revealing facit information			
Personal characteristics and attitudes	Integration of feedback and joint design sessions			
A poor "designers' self-image" leading him/her to be relegated to a "subsidiary role"	Early Involvement of the scientist in the design process (brainstorms)			
"Possible Collaborators" may not recognize designers' contributions	Participation of designers on some day to day scientific activity			
Lack of disciplinary recognition	Collaboration settings			
Cacilland purchalagical impediments Desistance to important purchase in the	Clarity about the scope and limitations of collaboration, and the expected contribution of each member of the team Clear definition of project responsibility according to disciplinary abilities			
Social and psychological impediments: Resistance to innovation, mistrust, insecurity, marginality	Involvement of 3rd parts moderating/feed backing/fostering collaboration			
Limited transaction memory: Unawareness of other people's knowledge	None of the researchers close than the others to a solution at the beginning			
Social overload: Senior researchers reluctant to collaborate	Clear allocation of responsibilities			
Fixed and narrow preconceptions about design and designers	Having a team leader or an altenative a work model in which decisions are taken by consensus			
Unrealistic or imprecise expectations about design and designers	Having "tacilitator" to ease communication between members of the team			
Passive role of scientist	Resources			
Lack of motivation	Provision of materials, equipment and space for designers' experimentation			
Eixation on own ideas/lack of flexibility	Resources for design development costs			
	Access to labs, people and information			
Disciplinary and interdisciplinary background and competences	Using socialising setting to discuss project			
Participants may lack: integrative skills, system thinking, and familiarity with interdisciplinarity	Communication			
Different disciplinary language	Intensive and constant communication			
Inexperience of designers (For example working with very small scales)	Scientist "De technifying" language to the right level			
Science abstruseness and distance from designers' normal experiences and knowledge	Scientists extra efforts to explain scientific concepts to the designers			
Communication (vocabulary and tools)	Attention paid to unnoticed specialised use of same words that have different meaning in each discipline			
	Developing a common language and making explicit the meaning of certain key words			
Different wars and theles of communications on visual war written	Attitude & Behaviour			
Dimensional and styles of communication e.g. visual vs. written	Active participation, engagement and time dedication			
Communication difficulties the participants had due to the lack of "any shared formal language"	Proactive attitude to overcome the science knowledge barrier by the designers			
Designers lack of communication about own disciplinary competences	Recognition of disciplinary strengths and abilities			
Approach and methods	Additional motivations different to the professional interest on the project topic			
Different approach to problem solving	Being receptive, open minded , ready and proactive in learning from others, and having a sense of humour.			
Different methodological approach (intuitive/subjective vs. Scientific rational and objective)	Approach & Method			
Focus and epistemological estance	Research topics are equally interesting for all disciplines involved			
Project focus divergence (what is important)	Reciprocity: giving back to the subjects studied by sharing with them the research developments and findings			
Disciplinary assumptions (status quo ys change) (seal inside ys on their heads)	Parity: competing disciplinary points of view should be weighted by the team and balanced			
Disciplinary assumptions (status quo vis change) (real insight vis on their behalt)	Agreement on measurement must be reached			
Barrier empirically proved Barrier drawn from design literature Barrier drawn from interdisciplinary literature	Enabler empirically proved Enabler drawn from interdisciplinary literature			

However Peralta (2013)'s study does not apply entirely to the context of material development as it was:

-Done for Scientific research, **not** for material development

Scientific research. Design Overall case study D&S formal Meetings/ meeting Activity points ratio CS 1 Mask 10 CS 2 Immunoassav CS 3 Multistable U CS 4 Stem Cell A All case studies Scientist Designers and Scientist Designers individual activity individual activity shared activity

Case studies' scientists and designers activity.

However Peralta (2013)'s study does not apply entirely to the context of material development as it was:

-Done for Scientific research, not for material development

-Designers acted as design providers, not as fellow researchers

The Study

This study attempts to identify what barriers to and enablers (B&E) of collaboration are in collaborative work between designers and scientists in the context of material development.

It also intends to establish if there are B&E that are inherent to collaborative material development.

Case 1

Foam formed cellulose 3d shaping

The collaboration was set to develop ways of shaping 3D structures made of foam formed cellulose, and to find potential application for the material

Sustainable design and fibre materials researcher with a background in textile design

Fibre product researcher with a background in physics and mathematics

Case 2

Exploration of functional textiles structures with 3D printing technology

The collaboration was established to explore future applications of cellulose based 3D printing technology on functional textiles. In addition, to manufacture demonstrators that would communicate the potential of the technology

Design researcher with a textile design background (and a physics degree too!)

Researcher in cellulose chemistry with a background in graphic art technology

 $\mathbf{0}$

The collaboration was set i

associated moulding technol

Case 3

Moulding development for cellulose foam forming technology

applications for foam forming technology and to

A design researcher with an MA in Industrial and Strategic design

A researcher with a background in Science Engineering and Energy studies

Case 4

Cellulose application for architectural applications

The collaboration was initiated to develop new and future applications of cellulose-based materials in architecture and interior spaces

A design researcher with a background in spatial and industrial design as well as in architecture

0000

A researcher with a background in technical technology specialized in papermaking science

-78 barriers and enablers

-15 collaboration Subcategories

-9 main collaboration categories

Collaboration categories

-Context

-Team dynamics, composition & management

-Collaboration settings

-Personal characteristics, attitude & behavior

-Disciplinary / interdisciplinary background & competences

-Communication

-Research approach & methods

-Focus, values and epistemological stance

BARRIERS

ENABLERS

CRITICAL COLLABORATION CATEGORIES

CRITICAL COLLABORATION CATEGORIES

KEY BARRIERS & ENABLERS

Materials quantity

Designers can do more than products

Joint prototyping

Carlos Peralta Ph.D (Cantab)

THANKS!

Images sources/credits

SLIDE 2

https://materia.nl/material/ultra-high-performance-concrete/ultra-high-performance-concrete-con127-5/ http://www.rimexmetals.com/en/applications-detail.html?appid=1397&famid=

https://materia.nl/material/europlex-ppsu/

https://materia.nl/material/mastalmond/

SLIDE 3

https://www.dynomighty.com

http://www.telegraph.co.uk/culture/culturenews/8904643/Damien-Hirst-skull-to-go-on-show-at-Tate-Modern.html

http://cf.injohnnaskitchen.com/wp-content/uploads/2014/09/blanket-600x494.jpg

http://www.ikea.com/us/en/catalog/products/80089927/

https://materia.nl/article/apparition-soft-transparent-cow-skin-leather/

SLIDE 4

http://www.veridian.net/_managedFiles/listings/files/1472239644.png

https://materia.nl/

SLIDE 5

Picture by Eeva Suorlahti

SLIDE 6

Pic by Carlos Peralta

Pic by Alex Driver

SLIDE 7-10

Images from Peralta, C. (2013). Collaboration between designers and scientists in the context of scientific research (doctoral thesis). SLIDES 5,12-15, 17, 22

Pictures by Eeva Suorlahti

SLIDES 9, 16, 18-21

Images from Peralta, C., Niinimäki, K., & Kääriäinen, P. (2017). Barriers to and enablers for interdisciplinary collaboration between designers and scientists in the context of materials development (Paper in progress)