3D printing of cellulosic materials

09.01.2018 Finlandia hall D.Sc. (Tech.) Hannes Orelma, VTT Technical Research Centre of Finland

DESIGN DRIVEN VALUE CHAINS IN THE WORLD OF CELLULOSE DWOC

Outline of the presentation

- Introduction to the 3D-printing
- People behind the research
- 3D-printing of cellulose materials
- Research in DWOC with 3D-printing
- Highlights results of DWOC
- Conclusions

Research group of cellulose materials 3D-printing

Work package leader

• Hannes Orelma (VTT)

Researchers

- Tiia Tenhunen (VTT)
- Ville Klar (Aalto Eng)
- Pyry Kärki (Aalto Eng)
- Steve Spoljaric (Aalto Chem)
- Arto Salminen (Aalto Chem)
- Jaakko Pere (VTT)

Designers

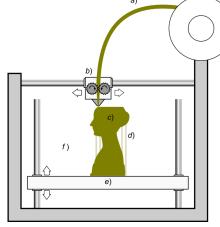
- Anastasia Ivanova (Aalto Arts) –
- Pauliina Varis (Aalto Arts)
- Tiina Härkäsalmi (Aalto Arts)
- Pirjo Kääriäinen (Aalto Arts)
 Professors
- Petri Kuosmanen (Aalto Eng)
- Jukka Seppälä (Aalto Chem)
- Ali Harlin (VTT)

Tekes

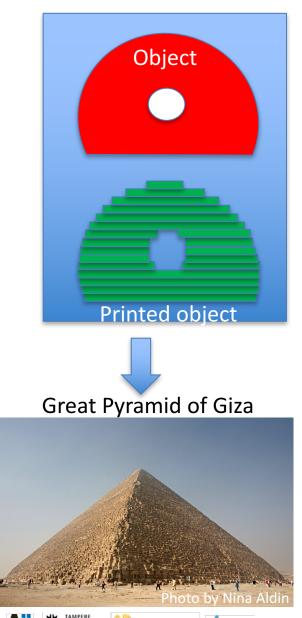
What is 3D-printing

- 3D-printing is an "Additive manufacturing" technique
 - Three dimensional object is created by successive layers of material based to digital model data.

Benefits


-Complex geometries can be form

-Layering with different materials possible


-Direct manufacture from CAD model.

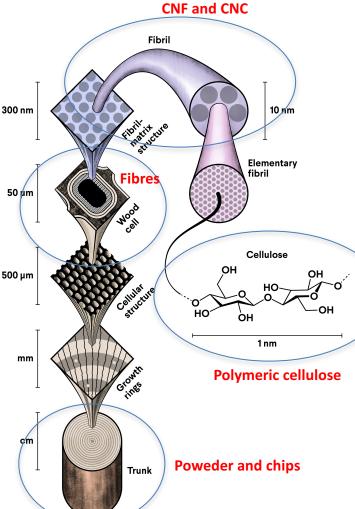
Mini factory (MiniFactory Oy Ltd)

Scopigno R. et al. (2017). "Digital Fabrication Techniques for Cultural Heritage: A Survey". **Tekes** Computer Graphics Forum 36 (1): 6–21.

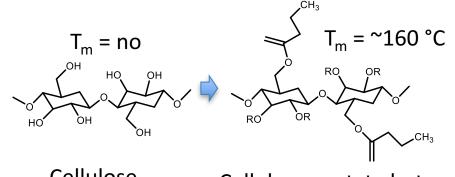
3D-printing techniques

	Technologies			
Materials	Parts build by polymerization	Parts build by using bonding agent	Parts build by melting	Parts build by solvent casting
Ceramic		BJ	LM	
Metal		BJ	LM EBM	
Powder		BJ		
Plastic	SL PJ	BJ	FDM L5	
Wax			L	
Colloids				DW

FDM = Fused Deposition Modeling


- EBM = Electron Beam Melting
- LM = Laser Melting
- MJ = Material Jetting
- SL = Stereolithography

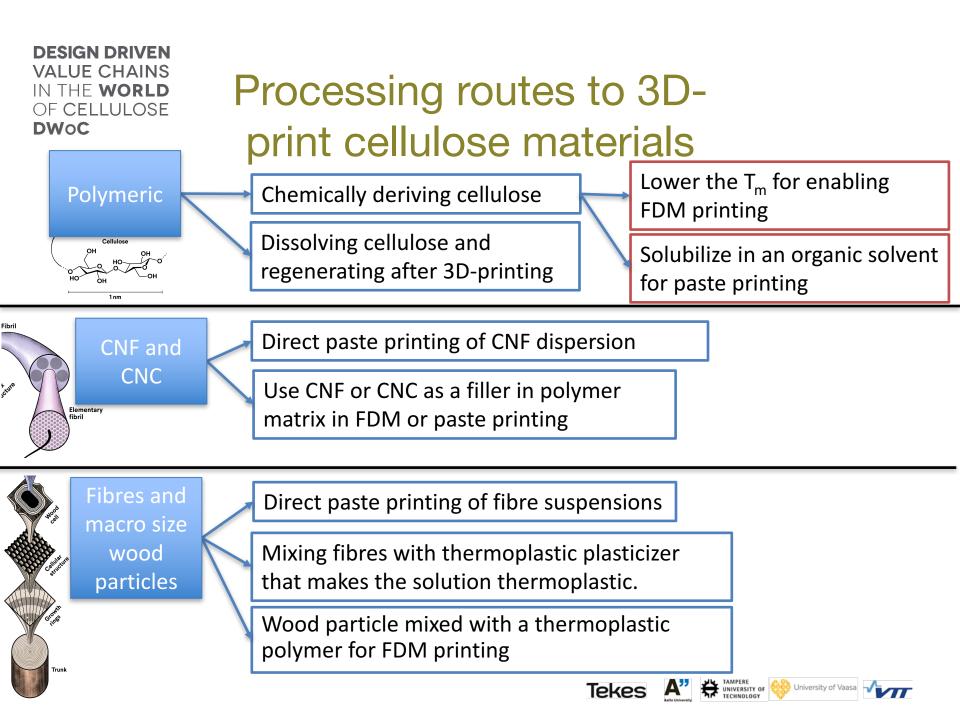
- BJ = Binder Jetting
- HP = Hybrid Processes
- LS = Laser Sintering
- PJ = Photopolymer Jetting
- DW = Direct writing /paste extrusion


🕺 University of Vaasa 🚽

VTT

3D-printing of cellulose materials

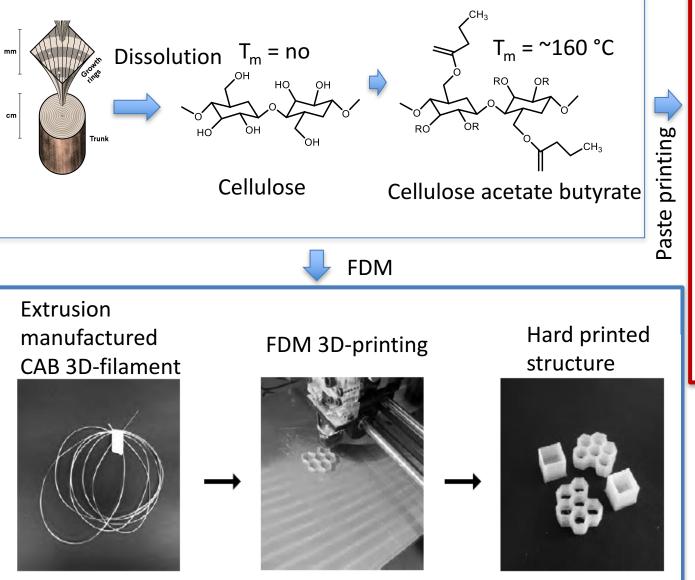
- <u>Cellulose is not thermoplastic!</u>
- Cellulose consist of ether bonds of -O-, which are relatively weak chemical bonds
- The ether bonds are broken with thermal energies smaller than energies needed to separate cellulose chains
- Chemical grafting of side groups lowers the melting point of cellulose.


Cellulose

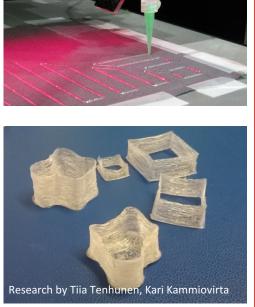
Tekes

Cellulose acetate butyrate

University of Vaasa

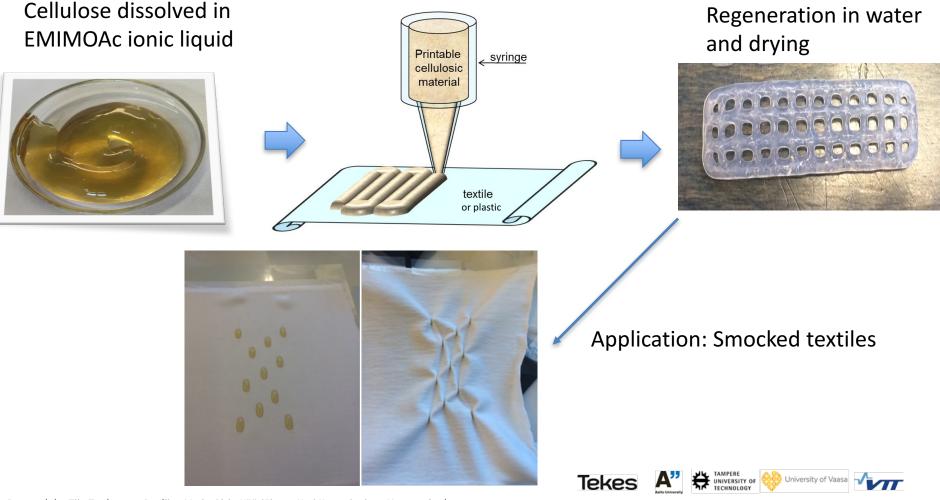

TAMPERE UNIVERSITY OF TECHNOLOGY

Research highlights from DWOC



3D printing of cellulose derivatives

Research by Steve Spoljaric, Arto Salminen, Jukka Seppälä


Textiles with functionalities

1. Polymeric cellulose materiala

DESIGN DRIVEN

DWoC

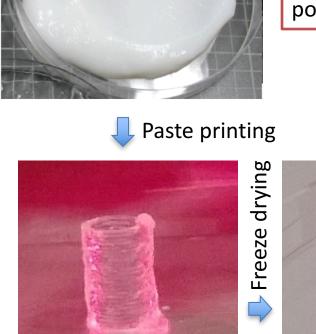
VALUE CHAINS IN THE WORLD 3D-printing of cellulose OF CELLULOSE dissolved in ionic liquids

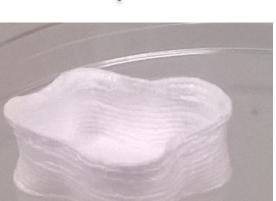
Research by Tiia Tenhunen, Pauliina Varis, Pirjo Kääriäinen, Kari Kammiovirta, Hannes Orelma

2. Nanoscale CNF materials

CNF gel 1 w-%

DESIGN DRIVEN VALUE CHAINS IN THE WORLD OF CELLULOSE DWOC


3D-printing of cellulose nanofibrils 3D-print time wit


Problem: High water content causes the collapse. Solution: Use of CNF powder as a filler in CNF. 3D-printed all-CNF structures first time with room drying

Design: Anastasia Ivanova, photo: Eeva Suorlahti.

University of Vaasa

Drying in room

Tekes

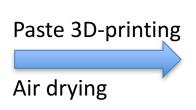
condition

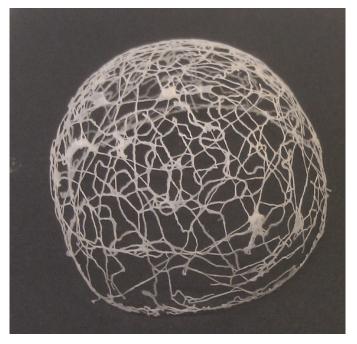
Research by Tiia Tenhunen, Anastasia Ivanova, Ville Klar, Pyry Kärki, Tuomas Hänninen, Hannes Orelma

2. Nanoscale CNF materials

DESIGN DRIVEN VALUE CHAINS

IN THE **WORLD** OF CELLULOSE


DWoC


3D-printing of self standing CNF structures without supports

- Problem: 3D-printed structures require support layers when printed on air.
- Solution: Use of chemical cross linker that hardeners the material simultaneously within the 3D-printing.

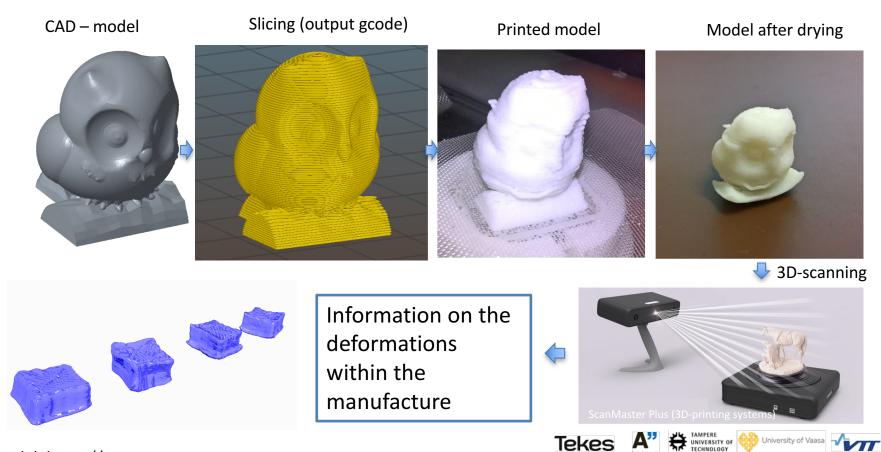
Dope

- Enzymaticallyfibrillated CNF (HEFCEL)
- Cross-linker and lubricant: poly(vinyl alcohol) (PVA) and glutaraldehyde (GA)

Tekes

IMPERE NIVERSITY OF ACHNOLOGY

University of Vaasa

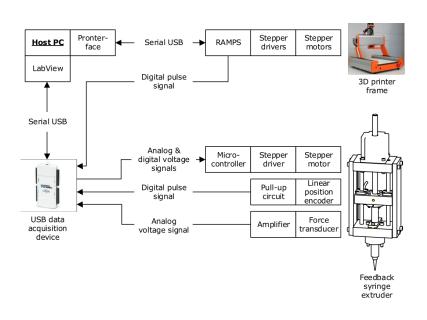

3. Research platform for developing cellulose 3D-applications

DESIGN DRIVEN VALUE CHAINS IN THE WORLD

OF CELLULOSE

DWoC

Development of 3D-printing of native cellulose materials


Model: <u>https://www.thingiverse.com/thing:709768/apps</u>

Research by Ville Klar, Pyry Kärki, Petri Kuosmanen, Jaakko Pere, Hannes Orelma

Modular 3D-printing platform

DWOC 3D-printer

- Affordable and precise CNC frame (From Stepcraft)
- Sturdy spindle mount (less restrictions in terms off mass on extruder prototypes)
- Standard Ø 43 mm spindle mount (Easy to test different extruders).

University of Vaasa

- Standard 3D printing software-toolchain
 - Gcode produced by standard slicers (Slic3r) can be used
- Separate software for control and measurement of extruder
- Efficient testing of different parameters and development of control algorithms.

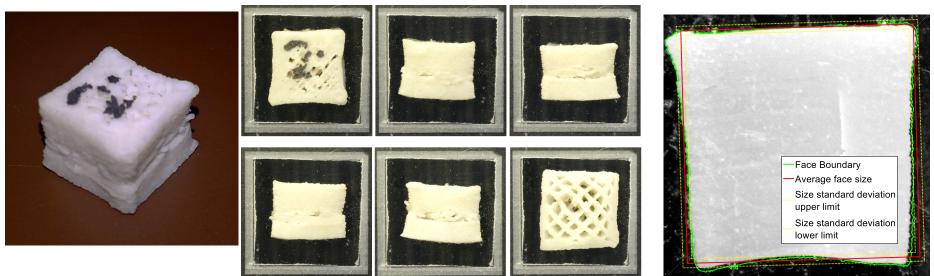
Extruder designs

https://www.preeflow.com/en/products/1k-dispenser/

http://lutum.vormvrij.nl/

- Iterative development of different extruders
- Testing of both own designs and commercial options
- Best performance in term of dosing accuracy and control with closed-loop control (position and pressure) syringe pump.

Analysis of geometrical fidelity


Determination of both overall deformation (shrinkage) & geometrical deformation (warping)

Tekes

UNIVERSITY OF

TECHNOLOGY

University of Vaasa

- New method: 3D scanning of 3D printed HefCell structures
- More efficient and precise determination of deformation during drying.

Pyry Kärki, 3D printing of cellulose-based materials, Master's thesis, 2017 Research by Ville Klar, Petri Kuosmanen

Conclusions

- Cellulose materials offer new opportunities for 3D-printed applications.
- Cellulose materials can be printed with varying 3D-printing techniques including FDM and paste printing (direct writing).
- In DWOC project we have gained significant knowledge about the processing of native and cellulose derivatives on solid and textile supports.

Thank you for your attention!

18